The most critical basis for communication is language. It is difficult to define what a language is and what it entails. At its core, language is something that can capture deeply complex concepts—both external and internal—and transform them into words with specific meanings that can be shared with others. Therefore, it entails both an internal component, in which the brain must link specific concepts to words and structures of the language, and an external component, in which these words and concepts must be translated into structures that can be broadcast to other individuals. These broadcasts can primarily be via sound, visuals, or touch, but in principle, any channel capable of encoding information should work in order to create structured signals in the form of a language.
There is no clear agreement on how old human languages are. Some argue that they started emerging about 100,000 years ago, while others argue for an even earlier origin. Nevertheless, however they came to be, languages are an integral part of being human, shaping both how our brains function and how we understand and influence the world and ourselves.
Some examples illustrate how wired we are to shape our brains for learning a language. The clearest natural experiment demonstrating the spontaneous learning and generation of languages is that of Nicaraguan Sign Language.
In the 1980s, for the first time in Nicaragua, a school for deaf children was created, bringing together children from all over the country to live and learn in one place. Before this initiative, there was no institutionalised system to teach deaf children how to communicate. As a result, at the time of their arrival, these children’s vocabulary was limited to a few hand gestures used within their families or communities of origin, often in the form of idiolects or cryptophasia (“private languages” usually spoken by one person or between twins).
Compounding this initial lack of complex communication, the teachers at the new school aimed to teach the children lip-reading and Spanish through that method. They discouraged the use of any sign language, believing that the children would put less effort into learning to lip-read. However, lip-reading had very limited success—the children were unable to communicate with their teachers.
Despite this, communication flourished outside the classroom among the children themselves. In the courtyard and throughout their daily activities, they combined the hand gestures and signs from their respective communities and created new ones. This process of creation, sharing, and accumulation spontaneously generated a new language, which rapidly evolved into more complex structures, giving rise to grammar and a more elaborate vocabulary. This increase in complexity and fluency was particularly evident among younger generations of students, who picked up the signs from older peers and refined them with intricate flourishes and added layers of meaning.
This entire process was documented by sign language experts, who were called by the teachers after noticing that the children could communicate fluently with one another but remained incomprehensible to the teachers. Initially, these experts also struggled to understand the children, but by filming them, analysing the footage, and interacting with them using the learned hand gestures, they gradually acquired the language. Most interestingly, over the years, they recorded the cumulative process of increasing complexity, allowing us to witness how the language evolved and standardised rapidly.
Notably, the children were already familiar with a small subset of home signs. However, this is not so different from the basic signs shared by social animals or those we can teach our pets. For example, when I was living in Mallorca, I was responsible for a dog named Gordon. I could tell him “sit,” and he would sit; “down,” and he would lie down; “up,” and he would stand on his hind legs; “la pateta,” and he would sit and give me his left paw. Even more complex instructions, like “We are going for a walk, but first, we need to go to the basement,” were followed correctly—Gordon would go straight to the basement instead of heading directly outside. Not only that, but he also communicated with me: for instance, he would touch his water bowl to indicate it was empty or stand patiently by the courtyard door when he wanted me to open it. Through these examples, one might say that he and I shared basic communication and understanding, but no one would, in their wildest dreams, call that a language. Nor would a language ever emerge from these exchanges. This became especially clear when I said more complex things, like “Could you go to the cupboard, open the door, and bring me a kilogram of rice, please?” or “Do not bark at the neighbour’s dogs!” Gordon could open doors, so that part wasn’t a problem, but the rest was beyond his capabilities.
The case of Nicaraguan Sign Language is particularly important because it demonstrates the evolutionary nature of language within a short time frame and its ability to keep expanding—something that does not occur in any other non-human animal. To be fair, dogs can be trained in more complex ways than my simple set of commands (and one particular, named Chaser, learned can more than 1000 words!), and other animals, such as dolphins, elephants, circus animals, horses, buffaloes, parrots, pigeons, and crows, can learn to respond to basic commands from their human carers. Bonobos, in particular, can learn up to hundreds of hand gestures to communicate basic information with their trainers, and similarly, dolphins can understand basic sentence order. However, this is the maximum extent of their communication; it does not go any further. Nor do animals copy human language to communicate among themselves in more complex ways—not even parrots, which can mimic hundreds of human sounds, spontaneously start using them to communicate with each other. Humans, on the other hand, have the unique capacity to transform simple signals into an elaborate and constantly evolving set of communication codifications.
The connection between language and the brain is deeply rooted in humans, with both being intricately linked, as seen in the Sapir-Whorf hypothesis. Language shapes the brain, and the brain, in turn, shapes language. The latter is evidenced by the fact that certain sounds seem to be more naturally associated with certain concepts—for instance, sharp objects are commonly linked to words with sharper sounds, while round objects tend to be described using softer pronunciations across multiple languages. Language is integral to memory, abstract thinking, and, fascinatingly, self-awareness. Language has been shown to drive much of the brain’s core “hardware”. Languages shape brains to such an extent that, most of the time, we think in a language—or in multiple languages if we are multilingual.
For those who are born deaf, rather than relying on an “inner voice” as spoken-language users do, their thought processes are shaped by visual sign thinking or the sensation of body gestures. Interestingly, deafness has a significantly greater impact on the brain than blindness. People born completely deaf and who never learn sign language fare only slightly better than the rare individuals who grow up without any language exposure. Without language, they fail to develop an “inner voice”, which is crucial for the brain’s ability to process information. This is especially significant in early childhood. Those who are not taught sign language until later in life often have learning problems throughout their lives. It seems that the brain processes sign language exactly as it does spoken language, using the exact same regions.
Communication - Culture <- Previous Next -> Forms of communication